安全公司报告
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202210984259.9 (22)申请日 2022.08.17 (71)申请人 康一 地址 063100 河北省唐山市古冶区北 范新 民街7号 (72)发明人 康一 郭子豪 (74)专利代理 机构 北京同辉知识产权代理事务 所(普通合伙) 11357 专利代理师 孙艳敏 (51)Int.Cl. G08G 1/017(2006.01) G06N 3/04(2006.01) G06N 3/08(2006.01) G06V 10/36(2022.01) G06V 10/44(2022.01)G06V 10/774(2022.01) G06V 10/82(2022.01) G06V 20/62(2022.01) G06V 40/16(2022.01) G07C 9/21(2020.01) G07C 9/25(2020.01) (54)发明名称 一种车辆进 入无接触式智能控制方法 (57)摘要 本发明公开了一种车辆进入无接触式智能 控制方法, 包括如下过程: S1车辆触发系统启动, S2车牌和人面部图像采集, S3 图像识别: 车牌识 别模块和口罩识别模块分别对所述车牌图像和 人面识图像进行识别, 得到车牌号码数据和是否 佩戴口罩的判断结果; S4识别数据的处理: 对于 口罩识别模块识别结果是, 启动健康码处理模块 识别健康码, 并判断健康码是否正常; S5入口闸 机的控制: 当健康码处理模块识别结果为是, 控 制模块向闸机发送开启指令控制入口闸机开启, 并记录车牌号码和进入时间。 其中车牌和口罩识 别模块, 采用YOLOV4。 本发明实现了车牌与口罩 佩戴的自动智能识别, 特别是还 结合健康码的自 动识别判断, 不仅提高了效率, 还提高的安全性, 适应疫情控制的需要。 权利要求书2页 说明书7页 附图1页 CN 115331453 A 2022.11.11 CN 115331453 A 1.一种车辆进入无接触式智能控制方法, 包括如下 过程: S1触发系统启动: 当车辆进入入口闸机预定位置, 触发控制系统工作, 链接系统硬件, 并选择串口启动程序; S2车牌和人面部 图像采集: 图像采集设备启动, 识别车牌的摄像头和识别人面部的摄 像头分别采集车牌图像和人面部图像; S3图像识别: 车牌识别模块和口罩识别 模块分别对S2采集的所述车牌图像和人面识图 像进行识别, 得到车牌 号码数据和是否佩戴口罩的判断结果; S4识别数据的处理: 对于口罩识别模块识别结果为否, 控制模块控制反馈模块通过语 音或文字提醒车内人员佩戴口罩; 识别结果为是, 启动健康码处理模块以识别健康码, 并判 断健康码是否正常; S5入口闸机的控制: 当健康码处理模块识别结果为是, 控制模块向闸机发送开启指令 控制入口闸机开启, 并记录车牌号码和进入时间; 当健康码处理模块识别结果为否, 控制模 块不给闸机发送开启指令并通过 所述反馈模块 通过语音或文字提醒禁止进入。 2.如权利要求1所述的车辆进入无接触式智能控制方法, 其特征在于: 所述口罩识别模 块, 采用YOLOV4 mobilenetv2进行识别, 包括训练子模块和检测子模块。 3.如权利要求2所述的车辆进入无接触式智能控制方法, 其特征在于: 所述检测子模块 口罩检测方法为: C1获取摄像头所采集的图像; C2加载口罩检测模型; C3加载检测种类标签文件; C4加载先验框对应的txt文件; C5对图像进行不失真图像尺寸调整; C6判断GPU是否可用; C7将图像输入 网络中进行预测, 得出预测框, 对预测框进行堆叠, 然后进行非极大值抑 制; C8输出目标位置以及目标种类概 率; C9将检测结果在图像上进行绘制并显示。 4.如权利要求1所述的车辆进入无接触式智能控制方法, 其特征在于: 所述车牌识别模 块包括训练子模块和检测子模块, 所述检测子模块包括车牌预处理、 车牌提取和车牌字符 识别步骤, 具体为: B1车牌预处理: 对车牌图像进行灰度化处理, 然后对图像边缘提取, 对边缘提取的图像 进行腐蚀和膨胀, 再进行均值滤波, 得到预处 理图像; B2车牌提取流程: 使用findContours对B1步骤预处理过后的图像进行轮廓查找, 遍历 轮廓, 获取每个查找到的轮廓的最小外接矩形的中心 坐标, 宽高以及旋转角度, 然后根据宽 高变换进行宽高交换, 然后根据车牌的宽高比进行车牌初步提取, 将提取到的车牌进行仿 射变换以及裁剪, 获取到提取的车牌区域图像, 将裁剪过后的车牌进 行平均像素计算, 根据 计算到的图像RGB值进行判断当前 车牌的颜色, 筛 选掉颜色不 正确的车牌; B3车牌字符识别: 将B2步骤筛选后的图像进行尺寸调整, 并进行字符识别, 字符识别采 用YOLOV4模型进行 车牌字符识别, 最后返回车牌识别字符结果。权 利 要 求 书 1/2 页 2 CN 115331453 A 25.如权利要求1所述的车辆进入无接触式智能控制方法, 其特征在于: 所述健康码处理 模块, 使用opencv4的QRCodeDetector函数进行识别健康码的二维码, 获取识别到的二维码 解析的信息 。 6.如权利要求2或4所述的车辆进入无接触式智能控制方法, 其特征在于: 所述训练子 模块的训练方法如下: T1制作数据集: 制作车牌或人脸图片, 人脸图片要包括未佩戴口罩和佩戴口罩的人脸 图片, 使用labelme对图片信息做标记, 每次标注一张图片完成时都将所标注的信息保存 为.xml文件, 所有xml文件中会 包含所标注图像的ROI区域信息; T2训练参数设置: 在训练时需要对模型的网络超参数进行设定, 涉及图像输入分辨率、 置信度阈值、 与非极大值抑制的i ou大小、 初始学习速率、 和优化器 类型; T3模型训练: 将T2标记的图像数据集输入YOLOV4 mobilenetv2网络进行训练; T4模型欠拟合与过拟合处理: 在损失函数里添加限制权重参数过大的L1范数正则化或 者L2范数正则化, 在损失函数 下降的过程中, 使得权 重参数逐渐趋向0甚至等于 0; T5验证数据集与评测标准: 验证数据集首先将原来训练数据集中划分为K个不重叠的 子数据集, 接着再进行K个模型训练和验证, 最后对这K次的训练偏差和验证误差各自求平 均数; 评测标准采用mAP, 其计算公式如式1 ‑3所示: 其中QR是验证集个数。 7.如权利要求6所述的车辆进入无接触式智能控制方法, 其特征在于: 所述T4步骤中, 正则化可以分为L1正则化与L2正则化, L1正则化的计算方法如公式1 ‑1所示, L2正则化的计 算方法如公式1 ‑2所示: 同时, λ为 正则化因子, 是超参数; ||w||1为L1范数, ||w||1为L2范数。权 利 要 求 书 2/2 页 3 CN 115331453 A 3
专利 一种车辆进入无接触式智能控制方法
文档预览
中文文档
11 页
50 下载
1000 浏览
0 评论
309 收藏
3.0分
赞助2.5元下载(无需注册)
温馨提示:本文档共11页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助2.5元下载
本文档由 人生无常 于
2024-03-18 04:39:54
上传分享
举报
下载
原文档
(435.3 KB)
分享
友情链接
T-CI 006—2023 具有大气净化功能的沥青道路光催化涂层.pdf
GB-T 20004.2-2018 团体标准化 第2部分:良好行为评价指南.pdf
GB-T 38638-2020 信息安全技术 可信计算 可信计算体系结构.pdf
GB-T 25759-2010 无损检测 数字化超声检测数据的计算机传输数据段指南.pdf
GB-T 42568-2023 工业互联网平台 微服务参考框架.pdf
GB-T 35285-2017 信息安全技术 公钥基础设施基于数字证书的可靠电子签名生成及验证技技术要求.pdf
信通院 移动数字广告与互联网反欺诈蓝皮报告.pdf
GB-T 37568-2019 铜及铜合金镀锡带材.pdf
GB-T 42720-2023 电子特气 六氯乙硅烷.pdf
TB-T 2973.2-2019 列车尾部安全防护装置 第2部分%3A 旅客列车尾部安全防护装置.pdf
面向AI大模型的智算中心网络演进白皮书-2023 -中国移动.pdf
GB-T 22484-2016 城市公共汽电车客运服务规范.pdf
DB52-T 1034-2019 压缩天然气车用气瓶充装安全管理规范 贵州省.pdf
GB-T 10002.2-2023 给水用硬聚氯乙烯 PVC-U 管件.pdf
T-FJLY 001—2022 自然教育基地质量评定.pdf
LY-T 3159-2019 细木工板生产节能技术规范.pdf
GB-T 41819-2022 信息安全技术 人脸识别数据安全要求.pdf
GB-T 14602-2014 电子工业用气体 氯化氢.pdf
GB-T 29033-2012 水-水热泵机组热力学完善度的计算方法.pdf
GB-T 3411.1-2009 大坝监测仪器 孔隙水压力计 第1部分:振弦式孔隙水压力计.pdf
1
/
3
11
评价文档
赞助2.5元 点击下载(435.3 KB)
回到顶部
×
微信扫码支付
2.5
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。